References - Datasheet

Revised: 2025-08-15

UpDtae: 2025-08-15

### A100, ALLOY 100, UNS K92580, AERMET 100

**Alloy 100** (also known as **Aermet 100**) is an **ultra-high-strength martensitic steel** developed primarily for aerospace and defense applications where a combination of extreme strength, toughness, and stress-corrosion resistance is required.

### **Comparison to Similar High-Strength Steels**

| Alloy                  | Tensile Strength<br>(MPa) | Toughness<br>(MPa√m) | Key Strengths                                               |
|------------------------|---------------------------|----------------------|-------------------------------------------------------------|
| Aermet 100             | 1930+                     | 110+                 | Best balance of strength + toughness + corrosion resistance |
| 300M                   | 1860-2000                 | ~70                  | High strength, but lower toughness & corrosion resistance   |
| 4340                   | 1500-1800                 | ~60                  | Widely used, but inferior to Aermet 100                     |
| Maraging 250<br>(18Ni) | 1700-1900                 | ~90                  | High toughness, but lower strength than Aermet 100          |

- Aircraft landing gear (F/A-18, F-22, F-35)
- Armor-piercing components
- High-stress aerospace fasteners
- Racing & high-performance automotive parts

### Why Choose Aermet 100 Over Alternatives?

- Best-in-class strength-toughness combination for critical aerospace/defense uses.
- Resists stress-corrosion cracking better than 300M or 4340.
- Used where failure is not an option (e.g., fighter jet landing gear).

### **Chemical Composition**

| Grade                         | Chemical composition WT % |      |      |       |       |         |       |       |         |       |       |       |        |
|-------------------------------|---------------------------|------|------|-------|-------|---------|-------|-------|---------|-------|-------|-------|--------|
| Grade                         | С                         | Mn   | Si   | P*    | S     | Cr      | Ni    | Co    | Мо      | Ti    | Al    | 0     | N      |
| AerMet<br>100                 | 0.23                      | -    | -    | -     | -     | 3.10    | 11.10 | 13.4  | 1.20    | 0.05  | -     | -     | -      |
| AMS<br>6532<br>UNS<br>K92580  | 0.21-0.25                 | 0.10 | 0.10 | 0.008 | 0.005 | 2.9-3.3 | 11-12 | 13-14 | 1.0-1.3 | 0.015 | 0.015 | 20ppm | 15ppm  |
| AMS<br>6478B<br>UNS<br>K92580 | 0.21-0.25                 | 0.10 | 0.10 | 0.008 | 0.005 | 2.9-3.3 | 11-12 | 13-14 | 1.0-1.3 | 0.015 | 0.015 | 20ppm | 15ppm  |
| Alloy<br>100                  | 0.21-0.25                 | 0.10 | 0.10 | 0.008 | 0.005 | 2.9-3.3 | 11-12 | 13-14 | 1.0-1.3 | 0.015 | 0.015 | 0.002 | 0.0015 |



References - Datasheet

Revised: 2025-08-15

UpDtae: 2025-08-15

\* P+S: 0.010

### **Mechanical Properties**

### **Room Temperature Performance**

| Property                 | Value                       | Test Standard |
|--------------------------|-----------------------------|---------------|
| Tensile Strength         | 1930-2070 MPa (280-300 ksi) | ASTM E8/E8M   |
| Yield Strength           | 1650-1790 MPa (240-260 ksi) | ASTM E8/E8M   |
| Elongation               | 10-14%                      | ASTM E8/E8M   |
| Fracture Toughness (KIC) | 110-130 MPa√m               | ASTM E399     |
| Hardness                 | 52-54 HRC                   | ASTM E18      |

### Fatigue Performance (S-N Curve)

- Fatigue limit (10<sup>7</sup> cycles, R=0.1): 700-750 MPa
- High-cycle fatigue (HCF): Dominated by microcrack initiation at inclusions
- Low-cycle fatigue (LCF): Controlled by plastic strain accumulation

#### **Fatigue Crack Growth Rate (Paris Law Parameters)**

| Stress Ratio (R) | C (mm/cycle)          | m   | ΔK Range (MPa√m) |
|------------------|-----------------------|-----|------------------|
| R=0.1            | 1.2×10 <sup>-11</sup> | 3.2 | 10-50            |
| R=0.5            | 3.5×10 <sup>-11</sup> | 3.0 | 10-40            |

### Fracture Toughness & CTOD Analysis

### **Crack Tip Opening Displacement (CTOD)**

- Critical CTOD (δ<sub>m</sub>): 0.15-0.25 mm (ASTM E1820)
- Threshold ΔK<sub>th</sub>: ~5 MPa√m (below which cracks do not propagate)

#### **Fracture Modes**

- Fatigue fracture: Striations + secondary cracks
- Overload fracture: Dimples + localized cleavage (hydrogen embrittlement risk)

# Microstructure Analysis (SEM/TEM/EBSD)

### **Key Phases in AerMet 100**

| Phase           | Morphology                       | Size             |  |  |
|-----------------|----------------------------------|------------------|--|--|
| Lath Martensite | High-dislocation-density bundles | 0.2-0.5 μm width |  |  |



References - Datasheet

Revised: 2025-08-15

UpDtae: 2025-08-15

| Phase              | Morphology               | Size               |  |  |
|--------------------|--------------------------|--------------------|--|--|
| Reversed Austenite | Thin films between laths | 10-50 nm thickness |  |  |
| M2C Carbides       | Spherical precipitates   | 5-20 nm diameter   |  |  |

### Fractography (SEM Imaging)

- Crack initiation: Often at Al₂O₃ inclusions (≤10 μm)
- **Stable crack growth**: Fatigue striations (~1 μm/cycle spacing)
- Fast fracture: Mixed ductile (dimples) + brittle (cleavage)

### 6. Environmental Effects & Special Conditions

### Hydrogen Embrittlement (SSRT Testing)

- Reduction in ductility: 14% → 6% elongation (after H-charging)
- Fracture mode shift: Ductile → intergranular cracking

### **Corrosion Fatigue (Salt Spray Testing)**

- Fatigue life reduction: 30-40% in 3.5% NaCl vs. dry air
- Crack growth acceleration: 2-3× faster at ΔK >15 MPa√m

## **Physical Properties**

- Density (lb/in3): 0.285
- Modulus of Elasticity: 28.2 x 103 ksi
- Melting Point (°F)
- Thermal conductivity (BTU-in/hr-ft2-°F): 172
- Specific heat (BTU/lb-°F) -
- Thermal expansion (1/°F): 0.00000552
- Electrical conductivity (% IACS): 4.01
- Electrical Resistivity: 70.0° F

### **Heat Treatment**

#### **Decarburization**

• Like other carbon bearing high strength alloys, AerMet 100 alloy is subject to decarburization during hardening. Heat treatment should take place in a neutral atmosphere furnace, salt bath or vacuum. Decarburization should be determined by comparing the surface and internal hardness of a small test cube for proper response. Metallographic determination of decarburization is not recommended for this alloy.

#### **Normalizing**

• AerMet 100 alloy can be normalized by heating to 1650° F (899° C) holding for one hour and air cooling to room temperature. Optimum softening for machining is obtained by following the 1650° F (899° C) normalize with a 16 hour 1250° F (677° C) overage anneal.

References - Datasheet

Revised: 2025-08-15

UpDtae: 2025-08-15

### **Annealing**

AerMet 100 alloy is softened by using a 1250° F (677° C) overage anneal for 16 hours. The optimum
annealed hardness of 40 HRC maximum is obtained following this anneal.

#### **Solution Treatment**

• The solution treatment temperature range is 1625° F+/-25° F (885° C +/-14° C) for 1 hour. The solution treatment temperature must be monitored by a thermocouple attached to the load.

#### Quenching

• Water quenching is not recommended.

Proper quenching practice is essential for AerMet 100 alloy. The alloy should be cooled from the solution treatment temperature to  $150^{\circ}$  F ( $66^{\circ}$  C) in 1 to 2 hours to develop optimum properties. Individual sections larger than 2" diameter to 1" thick (plate) must b quenched with oil in order to obtain  $150^{\circ}$  F ( $66^{\circ}$  C) in 1 to 2 hours. Individual sections up to 2" diameter or 1" thick (plate) will air cool to  $150^{\circ}$  F ( $66^{\circ}$  C) in 1 to 2 hours. The cooling rate of the furnace load must be monitored by a thermocouple attached to the hottest spot in the load to insure that the 2 hour cool to  $150^{\circ}$  F ( $66^{\circ}$  C) is obtained.

#### **Cold Treatment**

• Following cooling to room temperature, to obtain the full toughness capability AerMet 100 alloy should be cooled to -100° F (-73° C) and held for 1 hour. The parts can then be air warmed.

### **Straightening**

AerMet 100 alloy exhibits minimal size change during heat treatment; however, for some parts, mechanical straightening to compensate for distortion during heat treatment is appropriate.
 Prior to straightening, a low temperature stress relief at 350/400° F (482/204° C) for 5 hours following the refrigeration operation will provide an optimal combination of ductility and yield strength for the mechanical straightening operation.

#### Age

• The standard aging treatment for AerMet 100 alloy is 900° F +/- 10° F (482° C +/- 6° C) for 5 hours. Parts made from AerMet 100 alloy should never be aged at a temperature below 875° (468° C).

| Aging Temperature     | HRC       |
|-----------------------|-----------|
| As hardened           | 51.0/53.0 |
| 875° F (468° C) 5 hrs | 54.5/55.5 |
| 900° F (482° C) 5 hrs | 53.0/54.0 |
| 925° F (496° C) 5 hrs | 51.0/52.5 |

## **Thermal Properties**

#### **Forging**

Primary break down forging of AerMet 100 alloy should be done at a maximum starting temperature of 2250° F (1232° C). Finish forging should be done from 1800° F (982° C) with a finishing temperature below 1650° F (899° C) in order to optimize the final heat treat proper- ties. Following forging the parts should be air cooled to room temperature and then annealed. Following the anneal, the forgings should be normalized in order to restore



References - Datasheet

Revised: 2025-08-15

UpDtae: 2025-08-15

properties to the dead zone.

## **Welding Properties**

• Welding: Avoid conventional methods—EBW/LBW + PWHT required

## **Machining Properties**

AerMet 100 is somewhat more difficult to machine than 4340 at HRC 38. Hence, carbide tools are recommended at 280 to 350 SFM.

Following rough machining, stress relieve at 800° F (427° C) for 1-3 hours if a stress relief is desired.